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SUMMARY

It 1s becoming increasingly obvious that computerized automation can be a useful aid for a
wide varfety of positions in the command and control network where many of the tasks Jnvolve
sftuational assessment or “dfagnostic inference.” To optimally combine human talent and
computer-afding systems, one must know how the human operator performs the task unaided (and
under what circumstances), what subtasks can be allocated to the machine, and what varfables
affect operator acceptance of the aiding system. This paper presents a theoretical model of the
human performance of a diagnostic inference task when unaided by machine, including the varfables
affecting those {nference processes; and a preliminary model of how a computer-afding systew
might be expected to fit fnto the diagnostic system.
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PREFACE

The objective of this research was & theoretical model of how Muman subjects
perform a diagnostic inference task wnaided by automation. Inm addition, a prelimimary
model of how a computer-aiding device might be expected to fit iato the diagnostic
system was conceptualized.

This study supported research befiag conducted ta WU 3017-08-06, Modelling Impacts
of Automation on Non-Automated Tactics! Comsand:  and Control (C2) Systems. This
project concerns the prediction of changes ia cognitive perforsance as s function of
varfous kinds of automation. The methodology to be developed will assist plamners in
designing future automated systems that will optimize human performance. Technical
{ssues confronting thfs research concern the selection or development of quantitative
models that can accurately depict humen cognitive process and performence, and the
tools and techniques which can capture the l_nglur-hn‘l interests between operastor and

automatfion.

The results of the study described in this paper fincluded a list of vartables
anticipated to affect human performance in an inference task and the tdeatification of
a candidate technique that can be used to measure the effects that these varfables may

have on the inference task.

The author would 1ike to thank the Air Force Systems Command, the Afr Force Office
of Scientific Research, and the Southeastern Center for Electrical Engineering
Education for making possible a very fnteresting and rewarding Summer Fellowship at the
Atr Force Human Resources Laboratory, Wright-Patterson AFB, Ohio. She would like to
express sincere apprecfation to {he Laboratory, in particular the Ground Operations
branch, for an exceptional working environment. Finally, she would Ii{ke to thank
Rosemarie Preidia for her enormous support and collaboration in a difficult
undertaking, vertram Cream for his insightful asdministrative guidance, Larry Reed for
wany helpful discussions, and the other members of the branch for their professional
support and friendship.
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MANUAL AND COMPUTER-AIDED SEQUENTIAL
DIAGNOSTIC INFERENCE

I. INTRODUCTION

I+ is .. oming increasingly obvious that computerfzed automation can be a useful aid in a
wide variety of positfons in the armed services, This 1is especially true in the world of Command
and Control (C2) where much of the work fnvolves complex situational assessment or *diagnostic
inference." As technologfical complexities increase, human operators will have a more difficult
time trying to understand, integrate, and utilize the {information made available to them. In
contrast to man's limfted cognitive capacities and well-documented bisses,’*Z a computer can
utilize and aggregate Jarge volumes of information using predetermined optimal strategfes that
are most appropriate for the situation at hand. It is no Tonger a question of whether computer
aiding will be used, but how it will be used.

Just as there are problems inherent in using a compietely “manuail® system to perform a
function, there are also problems in using a completely “automated® system. These problems have
been discussed at length elsewhere;2»3 but let it suffice to say that at the current time,
expert systems are not sufficiently advanced to make automated systems infallible or able to deal
with the multitude of unforeseen occurrences that are 1ikely in the €2 environment.

Since neither man nor machine is solely capable of performing situational assessment
functions, the solutfon Ties fn using both together and relying on the strengths of each
{hopefully also minimizing the weaknesses of each). To fintegrate man and machine successfully
for a given task, one must understand how the human percei{ves and performs the task, and how the
machine can be prograsmed to perform the task {(or parts of the task), and then analyze the best
way to fit the two together, In the procurement cycle, 2 common method for developing a
computerized afding system is to intuitively develop a software system that seems as though f{t
could do the Job, Little attentfon is paild to analysis of the entire task and which subtasks
could be best performed by the man and which are best Jleft to the machine (a few exceptions do
exist). Consideration 1s usually not given beforehand to how the operators will react to the
aiding system nor to what vartiables will Tlead to their acceptance or rejection of the new
system, Instead, an automated system 1{s designed and a prototype built. Any wmodificatiasns
necessary to make the system compatible with the operator are usually done after this point.
This leads to only those changes that seem absolutely necessary and the result 1s an overall
man-machine system that is much less effectfve and efficient than what could have been achfeved.

Part of the problem outlined above results from an {nadequate knowledge concerning three
vital guestions: (a) How does the human operator perform the assessment task when unaided by
automation? {(b) What subtasks are best performed by the operator, and what subtasks are best
performed by the automatfon device? (c) What factors determine operator acceptance and use of
the automated system? The first question (how the operator performs the task) may seem
unnecessary to some. However, this information {s needed because it directly affects the answers
to the second and third questions. That 1s, 1f we know how the operator performs the task (not
how his/her performance differs from some theoretically optimal strategy), we can determine
specifically what capsbilities he/she has that we want to preserve in determining the optimal
man-machine subtask allocation. In addition, one can argue that how the operator performs the
task will largely affect his/her acceptance of the automation. If the automatfon 1s extremely
different from or incompatible with the operator's way of perceiving and accomplishing the task,
then he/she will be less Tikely to accept and use that automation,

The theorfes snd methodologfes of cognitive psychology can be brought to bear on this
rroblem, By mapping out the cognitive processes or strategles that are used by the perceiver




under various sftuational constraints, we can then weasure how those processes change as a
function of providing a computer-aiding system.

I1. OBJECTIVES

The primary objective of this effort was to develop a predictive model of a diagnostic
inference task and how that task would be affected by {mplementation of an automated system.
This aobjective included the following specific goals:

1. Develop a descriptive model of an {inferen-e task that {1s representative of inference
tasks in the €2 system and would be amenable to laboratory research.

2. Determine appropriate techniques for measuring process and performance in the inference
task.

3. Determine a preliminary set of {independent variables expected to affect the inference
process (and performance).

4, Develop a predictive model of the effects of automation on the operator’'s inferénce
processes,

Acccaplishing these goals would serve two purposes: provide guidance to researchers at the Air
Force Human Resources Laboratory concerning variables of critical interest in relited field
research and provide a framework for follow-on laboratory research designed to answer some of the
questions outlined earlier.

111. DESCRIPTION OF THE INFERENCE TASK

Diagnostic infersnca wil]l be defined as the process of using available cues to determine the
underlying or “"unseen” cause of those cues. An example {s medical diagnosis where the doctor
must infer a disease that causes some set of cues (symptows). If the avaflable cues are very
informative, the inference wil] be accurate and made with a high degree of confidence. However,
it is often the case that the cues do not convey enough information, and the inference task takes
place amid psychological uncertainty.

In the past, most research addressing this type of task assumed a "single-stage® process,
wherein the perceiver received the cues and somehow aggregated or operated upon the information
and derived a judgment. This was a popular view for some time, partfally because it was amenable
to laboratory experimentation and formal mathematical description and analys's.‘ Two
approaches were common: The first was to develop a formal mathematical model {such as Bayes
Theorem) to specify optimal performance and then to fit that model to data obtatned with human
subjocts;s the other approach was to use linear regression models to assess how the subjects
were combining or util{zing the cues 4n generating the inference.$>7  Research questions
addressed in these lstter studfes included such topics as, what cues are predominantly utilized
by uooplo.’ how many dimensfons or cues are used for varfous tasks and whether these cues are
same as in the “real vor!d." and whethnr experts cluster or weigh cues in a simflar
flshion."'o

The appropriateness of these models has been debated recently; therefore, this issue will not
be discussed at length. However, two points will be reviewed. The first {s the criticism that
most laboratory inference tasks finvolve simultaneous and orthogonally manfpulated cues. This cue
independence 1fs seen as being highly artifictal and unrealistic.'! Since iumans develop
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cognitive skills to deal with 2 real and complex world, it is not surprising that they perform
"suboptimally® on these inference tasks where no intercue correlations are preserved.

The second criticism with these approaches suggests that the inference task should be treated
not as a sfingle-stage process but as a multiple-- ge process.'2 This 1s not to say that the
reception and the integration of cues are different stages, but that the acquisition of cues or
characteristics takes place over time and that this process should be reflected {in the
theoretical models.

In Vine with these criticisms and recent views in cognitive psychology, it will be assumed
that the {nference task of finterest takes place in a complex situation where the perceiver must
sequentially seek information to make the inference Jjudgment. In addition, that {information fs
typically incomplete and varies in {ts diagnosticity. The perceiver starts with one or two cues
and then searches for others either to confirm hypothesized causes or to suggest new ones. The
inference process is viewed as a "constructive® process, much like buflding a j{gsaw puzzle. One
does not need all of the pieces to be able to finfer the nature of the picture; instead, the
ability to draw the inference will depend on the combined information provided by the pieces put
together,

In psychological terms, the perceiver uses both Conceptually-Driven processing (where the
hypothesized cause suggests cues to seek) and Data-Driven processing (where cues suggest
plausible hypotheses). The cyclic procedure continues until the percefver exceeds some certainty
criterfon that he/she knows the identity of the cause. In some cases, a lack of informatfon will
prevent that criterion from being reached at all,

IV, MEASURING PROCESS AND PERFORMANCE

It was suggested that the 1inference Jjudgment 1s constructed over time as information fs
acquired., This implies that it is {mportant to measure the process by which the perceiver is
coming to a conclusion, as well as to measure performance per se, Each of these issues will be
addressed in turn,

A. PROCESS

Several methodologies for measuring Jjudgmwent or decision °®process"™ have been suggested.
?ayne'3 {s 2 predominant supporter of two of these methods known as process tracing. The first
method 1s a class of wmeasurement techniques where the subject's information acquisition is
monitored. The subject must view or select {nformation in a way that can easily be observed and
recorded. Data are obtained concerning what cues the subject samples, in what order, how many
are sampled, and the amount of time for the cue sampling.

The other method of process tracing 1s the collection of verbal protocol. In this technique,
the subject is simply asked to "think out loud® while performing the task. Although this type of
data can give insight to the subject's strategles, it cannot be assumed that the subject will
always verbalize the cognitive processes as they occur.

After assessing the various process measurement techniques, a method was decided upon which
seemed most suftable to an {inferance task. The {inference is actually a classtification task,
where the perceiver must choose between class A, class B, class C, and so on (also possibly “none
of the above®). The process measure befng suggested consists of two aspects:

1. Allowing the subjects to acquire whichever cues they desire until they feel reasonabdbly
confident in their choice (this 1s simflar to the previously described {information acquisition
measure),




2. Asking the subject after each cue acquisition to give the hypoihesized cause(s), along
with a subjective certainty rating (i.e., 1 = not certain at all, 7 = extremely certain). An
example of these measures will be presented shortly,

B. PERFORMANCE

In addition to studying cognitive processes or strategfes engaged in by the perceiver, it fs
informative to determine how well the operator is able to infer the cause of the cues. The most
appealing measures are suggested by Signal Detection Theory (SDT) because it allows for separate
measurement of discriminatifon capabflities and subjective bias.'4 However, standard SDT
measures cannot at this time be applied to more than a two-category (Signal-Noise) task. Swets
and Pickett!® discuss the probiem of multiple-category discrimination and suggest using Percent
Correct as a reasonable solution. This is Justified because the inference task for multiple
causes Js actually conceptually similar to a forced-chofce task. It was therefore determined
that Percent Correct could be used as a performance measure in the diagnostic inference task.

To summarize the inference task and associated measures of process and performance:

1. The subject is gtven an initial cue.

L
.

The subject verbalizes one or more hypotheses, along with a certainty rating.
3. The subject samples a new cue of his/her choice,

4, The subject verbalizes revised hypothesis(es), along with new certainty rating.

(contfnues until sv-iect exceeds some subjectfve certainty criterton and chooses to stop)

An example of data collected from a subject 1s given below:

Class A Class B Neither
Cue 1 1
Cue 2 2 2
Cue 3 'y
Cue 4 7

It can be seen that after the first cue sampling, the subject hypothesized class A as the cause,
with a certainty rating of 1, However, after receiving addftional cues, the hypothesfzed cause
was switched to class B, with fncreasing certainty.

To determine performance (Percent Correct) from the data, a cutoff point must be chosen for
the certainty scale. For example, correct might be arbitrarily defined as "more than 4.* If the
correct answer for the example was class B, the subject would be scored as "correct® on only the
last observation given above. The advantage of this method 1s that accuracy of the inference can
be assessed without the subject's having to make a strictly Yes-No decisfon., (This {s a way of
"setting® the subject's decisfon criterfon.) With this method of data collectton, it 15 possible
to measure a varfety of process and performance varfables as the subject samples the informatfon:

1. 1Information sampled.




2. Hypotheses generated.

3. Hypothesis transition (at what point they give up and generate another),
4. Subjective certainty criteria.

5. Accuracy.

C. FEASIBILITY STUDY

A pilot study was conducted during the Summer Fellowship period to determine the
appropriateness of the above variables. Eight subjects (students at Wright State University,
Dayton, Ohfo) received course credit for participating in the study.

Subjects were first given fictitious names of two diseases, along with efght case studies for
each dfsease, The case studies were described fn terms of patient initfals and occupations and a
set of symptoms that varied in number from three to seven, There were eight total symptom
dimensions (such as blood pressure, weight loss, etc.). Four of the dimensions were strongly
assocfated with disease A, and the other four were strongly associated with disease B, However,
there was some overlap of symptoms across diseases, After subjects reported that they were
familjar with the disease characteristics (approximately 15 mfnutes), they were given 32 new case
studfes to diagnose, For each one, they were presented with a 3x5 index card with inftials,
occupation, and one symptom. They were also presented with seven other cards with a symptom
dimension {e.g., “"blood pressure®) labelled on one side. They were told to turn any card over
that they wished, and after each one, to tell the observer their hypothesis and certainty
rating, Data were collected in a manner corresponding to the example shown previously.

Based on the theoretical considerations outlined earlfer, two effects were expected:

1. The certainty ratings would start low and slowly f{ncrease until some criterion was
reached; at this point, subjects would discontinue information acquisition.

2. Percent Correct would be a positive function of the number of symptoms sampled on a given
trial.

Data relevart to the first hypothesis are presented in Figure 1, It can be seen that
certainty ratings did, in fact, start relatively low and increase over cue samples; the rate of
{ncrease was highest for trials where subjects sampled only four cues, and Towest for trials
where subjects sampled eight cues. Notfce that for trials where all symptoms were utilized, the
certainty rating never reached a Tlevel equal to those for the other trials. That is, a
subjective certafnty criterton of approximately 5 was exceeded 1n all but those trials where
subjects simply did not have enough {nformation to generate an inference with a high degree of
confidence.

Subjective Certainty

1T 1 31 4 $ & 1 &
Number of Cues Sampled
Figure 1. Subjective Certainty as a Function of Cues Sampled.
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This pattern in the Certainty data is consistent with the Accuracy (Percent Correct) data
shown 1in Figure 2, A Tiberal cutoff was arbitrarily chosen so that *3 and above* for the
Certainty rating was considered a “correct® answer. Still, the scores were not remarkably high
(mean £ correct for all trfals was .66). This would {ndicate that subjects were not able o
completely learn the correct structure of the diseass-symptom assoctfations. Performance varied
widely from subject to subject, with a range of .50 to .97 for the eight subjects.

.904

.80

.70

.60+

Accuracy

504

4 5 6

8

-~

Number of Cues Sampled

Figure 2. Accuracy as a Function of Cues Sampled.

Figure 2 shows that subjects' perceived uncertainty had some basis, in that performance

decreased as the subjects utflfzed a greater total number of symptoms. Interestingly, both data

sets show the same patters of an fncrease in accuracy and subjective certainty for trials where
scven cues ware sampled, Additional studies will be conducted to determine whether this effect
holds true for larger sets of data,

It can be seen from the data collected thus far that the process and performance measures are
appropriate for the task and yield a rich variety of information concerning the perceiver's
strategy. (It should be noted that additional, more fine-grained analyses are planned.)

Yo VARIABLES AFFECTING THE INFERENCE PROCESS

Inference process and performance are each affected by various situational constraints.
These include characteristics of the perceiver, of the task, and of the situational environment
from moment to moment. A real-world fi1lustration of this complex situation will be described as
a way of introducing situstional constraints which affect process and performance variables.

An important inference function within the €2 network 1s that of the radar operator (and/or
officer) who must determine the identity of afrcraft showing up on the radar scope. This person
receives a “track” on the scope and must “infer®" the identity of the atrcraft, using auxiliary
pieces of informatfon or "cues.” These pieces of information include Flight Plan Data; Special
Codes emitted by the afrcraft (friendly afrcraft); speed, heading, electronfc emfissions, and
intelligence data; and possibly, visval fdentiffcatton 1information. Some of this information
will be quite dfagnostic (e.g., the Codes), while other data will not be particularly diagnostic
{speed or heading). Given enough time, the operator could identify almost any track, If nothing
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else, the operator could send someone up to look at the aircraft. The problem 1s based on the
fact that the operator officfally has a maximum of 2 mfnutes to tdentify the aircraft, In
additfon, sending someone up for visual fdentification “< very costly. In wartime conditions,
the operator will have to identify many tracks in a very snort pertiod of time.

A preliminary 1ist of variables was developed that are consfdered most {1mportant {in
determining the operator's performance (as defined by accuracy). These situational constraints
on performance are shown in Figure 3; for example, "Time Stress® s a varfable that wil}
negatively impact performance. Time Stress will be determined by the number of tracks the
operator has to identify, how far away the aircraft are from {important locatfons, and the alert
status at the time (i.e., white, yellow, or red alert).

Operator
Experience

Operator
(0]
Performance

Amount of
Information
Aveilable .

Figure 3. Variables Affecting Operator Performance,

The same varfables are assumed to also fmpact the process of generating an {inference. Time
stress will result fin fewer cues considered and a lower subjective certainty critertion {(point
where the perceiver is willing to stop collecting data). Time stress s also expected to
decrease the number of hypotheses generated and considered during the inference process.

Suspiciousness of the atrcraft travel will tncrease the 1ikelthood of an enemy afrcraft being
hypothesized, resulting in cues being sampled which will confirm (or disconfirm) that
hypothesis, Diagnosticity or predictive validity of the cues will result in both & need to
sample fewer cues and a higher subjective certainty concerning the inference. Finally, operator
experience {s assumed to enhance the inference performarice, but it 1s not totally clear how that
varfable will fmpact the process.

Y1. INPACT OF AUTOMATION

Before discussing the impact of implementing a computer-aiding system, {1t {s necessary to
define the nature of the automsted system. Several researchers have developed taxonomies of
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types of autontion;"’ wost are admittedly imprecise. For the present purposes, a contfnuum
will be assumed, with 2 completely manual method of task accomplishment at one end and complete
automation at the other end of the continuum. An example of this type of continuum 1s shown in
Figure 4. One of the wore prevalent types of automatfon 1s given on the top right of the scale;
that is, the computer completely performs the task and provides an “"answer® to the operator, who
then decfdes 1f he/she wants to believe and utilize that answer. This type of automation fis
currently being planned for the radar {identification task described earlier.

Computer Only Computer Completely
Provides Computer Performs Performs Task and
information to Task Until Fails, Operator Decides
Operator in Some Then Operator Whether to “Accept”
Efficient Form Attempts Task Answer

1 - ™ {
f j +

Manual: Computer Suggests Computer Analytically Automated:
Operator Does Most Likely Answers Computes Answer Computer Does
Al the Work or Hypotheses; Based On Input All the Work
Operator Does the From Operator
Rest

Figure 4. Degrees of Automation,

A predictive model can be outlined at this point, describing the impact of impl-menting this
type of automation. First, we can say that most of the variables expect:d tu affect the human
perceiver will probably ﬂ affect the performance of the autom:cica system. Thus, under
conditions of stress, the human performance will deterforate, whereas machine performance will
not. The only variables expected to affect machine performance will be the characteristics of
the cues themselves (ss- Figure 5). This puts the operator tn the place of deciding whether to
*trust® the macninc, xnuwing that the machine can perform the task more qufickly and objectively
in times of duress. The operator's decfsfon to use the answer provided by the system will depend
on how much time he/she has, the seriousness of the consequences, and the nature of the
informatfon (e.g., if it 1s a suspicfous activity). 1In additfon, the operator's decisfon to use
the answer provided will strongly depend on the operator's feelings about his/her own ability
versus the machine’'s history of relifability and accuracy. If the machine has a relatively low
"hit rate,” the operator will be more inclined to consider fts answer worthless and go mostly on

his/her own judgment.

An interesting point which should be considered is the possibility that the operator might
treat the answer provided by the machine as merely “another cue.,® Rather than determining
his/her {inference based on the standard set of cues and then comparing this with the automated
chofice, the operator may simply use that chofce during the inference process, treating it as
he/she does all of the other pieces of iInformation,
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Figure 5. Implementation of Automation in Inference Task.

VII. RECOMMENDATIONS

The previous section outlined hypothesized effects of situational constraints on inference
process and performance., In addition, a preliminary predictive model was constructed relating
the f{mplementation of an automated subsystem withfn a ‘“manual®™ {nference system. The
relationships between the varfables need to be obtained empirically to confirm the theoretical
assumptions,

I propose to do this by developing a laboratory inference task that has the characteristics
outlined eariier (complex, sequential cue acquisition, etc.). This {nference task will be rum on
a computer terminal so that the subject can request cues and respond with hypotheses and
certainty ratings. This will allow collection of data relevant to the process and performance
variables outlined previously.

For assessment of the processes used in a manually performed {inference task, sttuational
constraints will be manfpulated and thefr effects on process and performance variables measured.
This will allow determination of what processes are utflfized under varfous task conditions.

A second phase of the follow-on research will be to provide the subject with a computer aid.
This will be 2 simulated computer-aiding system because the answer to be given to the subject
will be predetermined by the Experimenter. In this way, the accuracy of the answers provided to
the perceiver can be manfpulated as an independent varfable. It s expected that as accuracy of
the automated system increases, the use of the machine will also {increase in an exponential
fashion. Situational constraints will also be varied, similar to those used in assessment of the
completely manual {nference process.
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